Deep Learning per Sequence Modelling e Times Series
Questo corso introduce i principali approcci del Deep Learning basati su reti neurali profonde per l’analisi di sequenze di dati e di serie temporali. Esso è pensato come un corso di base per imparare a progettare, sviluppare e validare reti neurali dinamiche per affrontare problemi che riguardano sequenze di dati. La modellizzazione delle sequenze di dati tramite reti neurali dinamiche è alla base di molte applicazioni moderne di Machine Learning che riguardano serie temporali, linguaggio naturale e immagini. Lo scopo del progetto finale sarà quello di imparare ad affrontare in autonomia un problema reale o di laboratorio applicando un modello di rete neurale per creare un’applicazione o per valutare sperimentalmente la capacità degli approcci di deep learning in varie problematiche. Infine, la stesura di una relazione darà la possibilità di imparare un metodo scientifico di base che permetta di analizzare e sviluppare correttamente applicazioni nell’ambito dell’analisi di dati.